
 

Safe stateL 

Smart Contract Audit Report 

KNOWNSEC 

Safe State 

LOW RISK 



 

Version description 

Revised man Revised content Revised time version number Reviewer 

 
Document creation 

and editing 
2020/9/18 V1.0  

Document information 

Name Document version 

number 

Number Privacy 

level 

 NTON Smart Contract 

Audit Report 
V1.0 【NTON-DMSJ-20200918】 

Open project 

team 

Copyright statement 

Any text descriptions, document formats, illustrations, photographs, methods, procedures, 

etc. appearing in this document, unless otherwise specified, are copyrighted by Beijing 

Known Chuangyu Information Technology Co., Ltd. and are protected by relevant property 

rights and copyright laws. No individual or institution may copy or cite any fragment of this 

document in any way without the written permission of Beijing Chuangyu Information 

Technology Co., Ltd.  

  



 

目录 

1. Review ......................................................................................................................... 5 

2. Analysis of code vulnerability ....................................................................................... 6 

Distribution of vulnerability Levels ...................................................................................... 6 

Audit result summary .......................................................................................................... 7 

3. Result analysis ............................................................................................................. 8 

Reentrancy【Pass】 ........................................................................................................... 8 

3.2. Arithmetic Issues【Pass】 .................................................................................................. 8 

3.3. Access Control【Pass】 ...................................................................................................... 8 

3.4. Unchecked Return Values For Low Level Calls【Pass】 ..................................................... 9 

3.5. Bad Randomness【Pass】 .................................................................................................. 9 

3.6. Transaction ordering dependence【Low】 ...................................................................... 10 

3.7. Denial of service attack detection 【Pass】 .................................................................... 11 

3.8. Logical design Flaw【Pass】 ............................................................................................. 11 

3.9. USDT Fake Deposit Issue【Pass】 .................................................................................... 11 

3.10. Adding tokens 【Low】 ................................................................................................. 12 

3.11. Freezing accounts bypassed【Pass】 ............................................................................. 12 

4. Appendix A：Contract code ....................................................................................... 13 

5. Appendix B: vulnerability risk rating criteria ................................................................ 21 

6. Appendix C：Introduction of test tool ........................................................................ 22 

Manticore .......................................................................................................................... 22 

Oyente ............................................................................................................................... 22 



 

securify.sh .......................................................................................................................... 22 

Echidna .............................................................................................................................. 22 

MAIAN ............................................................................................................................... 22 

ethersplay .......................................................................................................................... 22 

ida-evm .............................................................................................................................. 23 

Remix-ide ........................................................................................................................... 23 

Knownsec Penetration Tester Special Toolkit ................................................................... 23 

 

  



 

1. Review 

The effective testing time of this report is from September 17,2020 to September 

18,2020. During this period, the Knownsec engineers audited the safety and regulatory 

aspects of NTON smart contract code. 

In this test, engineers comprehensively analyzed common vulnerabilities of smart 

contracts (Chapter 3) and It was discovered that the order of transactions depends on the 

risk, which is common in token contracts, and the point of increasing tokens was also 

discovered; so it's evaluated as Low-risk. 

The result of the safety auditing:  PASS 

Since the test process is carried out in a non-production environment, all the codes are 

the latest backups. We communicates with the relevant interface personnel, and the 

relevant test operations are performed under the controllable operation risk to avoid the 

risks during the test.. 

Target information for this test: 

Module name  

Token name NTON 

Code type Token code 

Contract 

address 
0xcfb152e5b93fc2c9906d4ff41fc8407dfa5e8851 

chained 

address 

https://etherscan.io/address/0xcfb152e5b93fc2c9906d4ff41fc8407dfa

5e8851 

Code 

language 
solidity 

 

 



 

2. Analysis of code vulnerability 

 DISTRIBUTION OF VULNERABILITY LEVELS 

Vulnerability statistics 

high Middle 

 

low  pass 

0 0 2 9 

 

 

 

  

Distribution Chart

high[0] middle[0] low[2] pass[9]



 

 AUDIT RESULT SUMMARY 

Result 

Test project Test content status description 

Smart 

Contract 

Reentrancy Pass Check the call.value() function for security 

Arithmetic Issues Pass Check add and sub functions  

Access Control Pass Check the operation access control 

Unchecked Return 

Values For Low Level 

Calls 

Pass 

Check the currency conversion method. 

Bad Randomness Pass Check the unified content filter 

Transaction ordering 

dependence 

Low 
Check the transaction ordering dependence 

Denial of service 

attack detection 
Pass 

Check whether the code has a resource abuse 

problem when using a resource 

Logic design Flaw Pass 
Examine the security issues associated with 

business design in intelligent contract codes. 

USDT Fake Deposit 

Issue 
Pass 

Check for the existence of USDT Fake Deposit 

Issue 

Adding tokens Low 

It is detected whether there is a function in the 

token contract that may increase the total 

amounts of tokens 

Freezing accounts 

bypassed 
Pass 

It is detected whether there is an unverified 

token source account, an originating account, 

and whether the target account is frozen. 

 

  



 

3. Result analysis 

  REENTRANCY【PASS】 

The Reentrancy attack, probably the most famous Ethereum vulnerability，led to a hard 

fork of Ethereum.  

When the low level call() function sends ether to the msg.sender address, it becomes 

vulnerable; if the address is a smart contract, the payment will trigger its fallback function 

with what's left of the transaction gas 

Test results：There is no relevant call external contract call in the smart contract code 

after detected. 

Safety advice：None。 

 ARITHMETIC ISSUES【PASS】 

Also known as integer overflow and integer underflow. Solidity can handle up to 256 

digits (2^256-1), The largest number increases by 1 will overflow to 0. Similarly, when the 

number is an unsigned type, 0 minus 1 will underflow to get the maximum numeric value. 

Integer overflows and underflows are not a new class of vulnerability, but they are 

especially dangerous in smart contracts. Overflow can lead to incorrect results, especially if 

the probability is not expected, which may affect the reliability and security of the program. 

Test results: No related vulnerabilities in smart contract code 

Safety advice：None 

 ACCESS CONTROL【PASS】 

Access Control issues are common in all programs,Also smart contracts. The famous 

Parity Wallet smart contract has been affected by this issue. 

Test results: No related vulnerabilities in smart contract code 



 

Safety advice：None。 

 UNCHECKED RETURN VALUES FOR LOW 

LEVEL CALLS【PASS】 

Also known as or related to silent failing sends, unchecked-send. There are transfer 

methods such as transfer(), send(), and call.value() in Solidity and can be used to send Ether 

to an address. The difference is: transfer will be thrown when failed to send, and rollback; 

only 2300gas will be passed for call to prevent reentry attacks; send will return false if send 

fails; only 2300gas will be passed for call to prevent reentry attacks; If .value fails to send, it 

will return false; passing all available gas calls (which can be restricted by passing in the 

gas_value parameter) cannot effectively prevent reentry attacks. 

If the return value of the  send and call.value switch functions is not been checked in 

the code, the contract will continue to execute the following code,and it may have caused 

unexpected results due to Ether sending failure. 

Test results: No related vulnerabilities in smart contract code 

Safety advice：None。 

 BAD RANDOMNESS【PASS】 

  Smart Contract May Need to Use Random Numbers. While Solidity offers functions 

and variables that can access apparently hard-to-predict values just as block.number and 

block.timestamp. they are generally either more public than they seem or subject to miners' 

influence. Because these sources of randomness are to an extent predictable, malicious 

users can generally replicate it and attack the function relying on its unpredictablility. 

Test results: No related vulnerabilities in smart contract code 

Safety advice：None。 

http://solidity.readthedocs.io/en/v0.4.21/units-and-global-variables.html
http://solidity.readthedocs.io/en/v0.4.21/units-and-global-variables.html


 

 TRANSACTION ORDERING DEPENDENCE【LOW】 

Since miners always get rewarded via gas fees for running code on behalf of externally 

owned addresses (EOA), users can specify higher fees to have their transactions mined more 

quickly. Since the Ethereum blockchain is public, everyone can see the contents of others' 

pending transactions.  

This means if a given user is revealing the solution to a puzzle or other valuable secret, 

a malicious user can steal the solution and copy their transaction with higher fees to 

preempt the original solution.  

Test results ：The transactional order dependency attack risk in the approve function in 

the NTON token contract is detected as follows: 

 

Possible security risks are described below: 

1. User A allows the number of user B transfers to be N (N > 0) by calling the approve 

function;  

2. After a while, user A decided to change N to M (M > 0), so he called the approve 

function again;  

3. User B quickly calls the transfer from function to transfer the number of N before the 

second call is processed by the miner. After user A's second call to approve is successful, 

user B can get the transfer amount of M again. That is, user B obtains the transfer amount of 

N+M by trading sequence attack. 

Safety advice: 



 

1. Front end restrictions, when user A changes the quota from N to M, it can 

be changed from N to 0, then from 0 to M：require((_value == 0) || (allowance[ms

g.sender][_spender] == 0)); 

2. Use the increaseapproval function and the increaseapproval function instead of the 

approve function 

 

 DENIAL OF SERVICE ATTACK DETECTION 

【PASS】 

In the ethernet world, denial of service is deadly, and smart contracts under attack of 

this type may never be able to return to normal. There may be a number of reasons for a 

denial of service in smart contracts, including malicious behavior as a recipient of 

transactions, gas depletion caused by artificially increased computing gas, and abuse of 

access control to access the private components of the intelligent contract. Take advantage 

of confusion and neglect, etc.  

Test results: No related vulnerabilities in smart contract code.  

Safety advice: None. 

 LOGICAL DESIGN FLAW【PASS】 

Detect the security problems related to business design in the contract code. 

Test results: No related vulnerabilities in smart contract code. 

Safety advice: None. 

 USDT FAKE DEPOSIT ISSUE【PASS】 

In the transfer function of the token contract, the balance check of the transfer initiator 

(msg.sender) is judged by if. When balances[msg.sender] < value, it enters the else logic part 



 

and returns false, and finally no exception is thrown. We believe that only the modest 

judgment of if/else is an imprecise coding method in the sensitive function scene such as 

transfer. 

Detection results: No related vulnerabilities in smart contract code..  

Safety advice: none 

 ADDING TOKENS 【LOW】 

It is detected whether there is a function in the token contract that may increase the 

total amount of tokens after the total amount of tokens is initialized. 

Detection results: After testing, there is a correlation function in the smart contract 

code, which can issue additional tokens, as shown in the figure. 

 

Safety advice: This problem is not a security problem, but some exchanges will limit the 

use of the additional issue function, and the specific situation needs to be determined 

according to the requirements of the exchange. 

 FREEZING ACCOUNTS BYPASSED【PASS】 

In the token contract, when transferring the token, it is detected whether there is an 

unverified token source account, an originating account, and whether the target account is 

frozen. 

Detection results: No related vulnerabilities in smart contract code. 

Safety advice: none. 

  



 

 

4. Appendix A：Contract code 

The source of the code for this test: 

https://etherscan.io/address/0xcfb152e5b93fc2c9906d4ff41fc8407dfa5e8851  

/** 

 *Submitted for verification at Etherscan.io on 2020-03-18 

*/ 

 

pragma solidity ^0.4.24; 

 

/** 

 * @title SafeMath 

 */ 

library SafeMath { 

 

  /** 

  * @dev Multiplies two numbers, reverts on overflow. 

  */ 

  function mul(uint256 a, uint256 b) internal pure returns (uint256) { 

    if (a == 0) { 

      return 0; 

    } 

 

    uint256 c = a * b; 

    require(c / a == b); 

 

    return c; 

  } 

 

  function div(uint256 a, uint256 b) internal pure returns (uint256) { 

    require(b > 0);  

    uint256 c = a / b; 

 

    return c; 

  } 

 

  function sub(uint256 a, uint256 b) internal pure returns (uint256) { 



 

    require(b <= a); 

    uint256 c = a - b; 

 

    return c; 

  } 

 

  function add(uint256 a, uint256 b) internal pure returns (uint256) { 

    uint256 c = a + b; 

    require(c >= a); 

 

    return c; 

  } 

 

  function mod(uint256 a, uint256 b) internal pure returns (uint256) { 

    require(b != 0); 

    return a % b; 

  } 

} 

 

/** 

 * @title Roles 

 */ 

library Roles { 

  struct Role { 

    mapping (address => bool) bearer; 

  } 

 

  function add(Role storage role, address account) internal { 

    require(account != address(0)); 

    role.bearer[account] = true; 

  } 

 

  function remove(Role storage role, address account) internal { 

    require(account != address(0)); 

    role.bearer[account] = false; 

  } 

 

  function has(Role storage role, address account) 

  internal 



 

  view 

  returns (bool) 

  { 

    require(account != address(0)); 

    return role.bearer[account]; 

  } 

} 

 

/** 

 * @title ERC20 interface 

 */ 

interface ERC20 { 

  function totalSupply() external view returns (uint256); 

 

  function balanceOf(address who) external view returns (uint256); 

 

  function allowance(address owner, address spender) 

  external view returns (uint256); 

 

  function transfer(address to, uint256 value) external returns (bool); 

 

  function approve(address spender, uint256 value) 

  external returns (bool); 

 

  event Transfer( 

    address indexed from, 

    address indexed to, 

    uint256 value 

  ); 

 

  event Approval( 

    address indexed owner, 

    address indexed spender, 

    uint256 value 

  ); 

} 

 

 

/** 

 * @title TokenBasic ERC20 token 



 

 */ 

contract TokenBasic is ERC20 { 

  using SafeMath for uint256; 

  mapping (address => uint256) private _balances; 

  mapping (address => mapping (address => uint256)) private _allowed; 

  uint256 private _totalSupply; 

 

  function totalSupply() public view returns (uint256) { 

    return _totalSupply; 

  } 

 

  function balanceOf(address owner) public view returns (uint256) { 

    return _balances[owner]; 

  } 

 

  function allowance( 

    address owner, 

    address spender 

  ) 

  public 

  view 

  returns (uint256) 

  { 

    return _allowed[owner][spender]; 

  } 

 

  function transfer(address to, uint256 value) public returns (bool) { 

    _transfer(msg.sender, to, value); 

    return true; 

  } 

 

  function approve(address spender, uint256 value) public returns (bool) { 

    require(spender != address(0)); 

 

    _allowed[msg.sender][spender] = value; 

    emit Approval(msg.sender, spender, value); 

    return true; 

  } 

 



 

  function increaseAllowance( 

    address spender, 

    uint256 addedValue 

  ) 

  public 

  returns (bool) 

  { 

    require(spender != address(0)); 

 

    _allowed[msg.sender][spender] = ( 

    _allowed[msg.sender][spender].add(addedValue)); 

    emit Approval(msg.sender, spender, _allowed[msg.sender][spender]); 

    return true; 

  } 

 

  function decreaseAllowance( 

    address spender, 

    uint256 subtractedValue 

  ) 

  public 

  returns (bool) 

  { 

    require(spender != address(0)); 

 

    _allowed[msg.sender][spender] = ( 

    _allowed[msg.sender][spender].sub(subtractedValue)); 

    emit Approval(msg.sender, spender, _allowed[msg.sender][spender]); 

    return true; 

  } 

 

  function _transfer(address from, address to, uint256 value) internal { 

    require(value <= _balances[from]); 

    require(to != address(0)); 

 

    _balances[from] = _balances[from].sub(value); 

    _balances[to] = _balances[to].add(value); 

    emit Transfer(from, to, value); 

  } 

 



 

  function _mint(address account, uint256 value) internal { 

    require(account != 0); 

    _totalSupply = _totalSupply.add(value); 

    _balances[account] = _balances[account].add(value); 

    emit Transfer(address(0), account, value); 

  } 

 

  function _burn(address account, uint256 value) internal { 

    require(account != 0); 

    require(value <= _balances[account]); 

 

    _totalSupply = _totalSupply.sub(value); 

    _balances[account] = _balances[account].sub(value); 

    emit Transfer(account, address(0), value); 

  } 

 

  function _burnFrom(address account, uint256 value) internal { 

    require(value <= _allowed[account][msg.sender]); 

 

    _allowed[account][msg.sender] = _allowed[account][msg.sender].sub( 

      value); 

    _burn(account, value); 

  } 

} 

 

contract MinterRole { 

  using Roles for Roles.Role; 

 

  event MinterAdded(address indexed account); 

  event MinterRemoved(address indexed account); 

 

  Roles.Role private minters; 

 

  constructor() public { 

    _addMinter(msg.sender); 

  } 

 

  modifier onlyMinter() { 

    require(isMinter(msg.sender)); 



 

    _; 

  } 

 

  function isMinter(address account) public view returns (bool) { 

    return minters.has(account); 

  } 

 

  function addMinter(address account) public onlyMinter { 

    _addMinter(account); 

  } 

 

  function renounceMinter() public { 

    _removeMinter(msg.sender); 

  } 

 

  function _addMinter(address account) internal { 

    minters.add(account); 

    emit MinterAdded(account); 

  } 

 

  function _removeMinter(address account) internal { 

    minters.remove(account); 

    emit MinterRemoved(account); 

  } 

} 

 

/** 

 * @title Mintable 

 */ 

contract Mintable is TokenBasic, MinterRole { 

  function mint( 

    address to, 

    uint256 value 

  ) 

  public 

  onlyMinter 

  returns (bool) 

  { 

    _mint(to, value); 



 

    return true; 

  } 

} 

 

/** 

 * @title Burnable Token 

 */ 

contract Burnable is TokenBasic { 

 

  function burn(uint256 value) public { 

    _burn(msg.sender, value); 

  } 

 

  function burnFrom(address from, uint256 value) public { 

    _burnFrom(from, value); 

  } 

} 

 

 

/** 

 * @title NTON 

 */ 

contract NTON is Burnable, Mintable { 

 

  string public constant name = "NTON"; 

  string public constant symbol = "NTON"; 

  uint8 public constant decimals = 18; 

  uint256 public constant INITIAL_SUPPLY = 3500000000 * (10 ** uint256(decimals)); 

 

  constructor(address _owner) public { 

    _mint(_owner, INITIAL_SUPPLY); 

  } 

 

} 

  



 

5. Appendix B: vulnerability risk rating criteria 

Smart contract vulnerability rating standard 

Vulnerability 

rating 

Vulnerability rating description 

High risk 

vulnerability 

The loophole which can directly cause the contract or the user's fund 

loss, such as the value overflow loophole which can cause the value of 

the substitute currency to zero, the false recharge loophole that can 

cause the exchange to lose the substitute coin, can cause the contract 

account to lose the ETH or the reentry loophole of the substitute 

currency, and so on; It can cause the loss of ownership rights of token 

contract, such as: the key function access control defect or call 

injection leads to the key function access control bypassing, and the 

loophole that the token contract can not work properly. Such as: a 

denial-of-service vulnerability due to sending ETHs to a malicious 

address, and a denial-of-service vulnerability due to gas depletion. 

Middle risk 

vulnerability 

High risk vulnerabilities that need specific addresses to trigger, such as 

numerical overflow vulnerabilities that can be triggered by the owner 

of a token contract, access control defects of non-critical functions, and 

logical design defects that do not result in direct capital losses, etc. 

Low risk 

vulnerability 

A vulnerability that is difficult to trigger, or that will harm a limited 

number after triggering, such as a numerical overflow that requires a 

large number of ETH or tokens to trigger, and a vulnerability that the 

attacker cannot directly profit from after triggering a numerical 

overflow. Rely on risks by specifying the order of transactions triggered 

by a high gas. 

 

 

 

 

 



 

6. Appendix C：Introduction of test tool 

 MANTICORE 

Manticore is a symbolic execution tool for analysis of binaries and smart 

contracts.It discovers inputs that crash programs via memory safety violations. 

Manticore records an instruction-level trace of execution for each generated 

input and exposes programmatic access to its analysis engine via a Python API. 

 OYENTE 

Oyente is a smart contract analysis tool that Oyente can use to detect common 

bugs in smart contracts, such as reentrancy, transaction ordering dependencies, 

and more. More conveniently, Oyente's design is modular, so this allows advanced 

users to implement and insert their own detection logic to check for custom 

attributes in their contracts. 

 SECURIFY.SH 

Securify can verify common security issues with Ethereum smart contracts, 

such as transactional out-of-order and lack of input validation. It analyzes 

all possible execution paths of the program while fully automated. In addition, 

Securify has a specific language for specifying vulnerabilities. Securify can 

keep an eye on current security and other reliability issues.  

 ECHIDNA 

Echidna is a Haskell library designed for fuzzing EVM code. 

 MAIAN 

MAIAN is an automated tool for finding Ethereum smart contract 

vulnerabilities. Maian deals with the contract's bytecode and tries to establish 

a series of transactions to find and confirm errors. 

 ETHERSPLAY 

Ethersplay is an EVM disassembler that contains related analysis tools. 



 

 IDA-EVM 

Ida-evm is an IDA processor module for the Ethereum Virtual Machine (EVM). 

 REMIX-IDE 

Remix is a browser-based compiler and IDE that allows users to build Ethereum 

contracts and debug transactions using the Solidity language. 

 KNOWNSEC PENETRATION TESTER SPECIAL 

TOOLKIT 

Knownsec penetration tester special tool kit, developed and collected by 

Knownsec penetration testing engineers, includes batch automatic testing tools 

dedicated to testers, self-developed tools, scripts, or utility tools. 


	1. Review
	2. Analysis of code vulnerability
	2.1. Distribution of vulnerability Levels
	2.2. Audit result summary

	3. Result analysis
	3.1.  Reentrancy【Pass】
	3.2. Arithmetic Issues【Pass】
	3.3. Access Control【Pass】
	3.4. Unchecked Return Values For Low Level Calls【Pass】
	3.5. Bad Randomness【Pass】
	3.6. Transaction ordering dependence【Low】
	3.7. Denial of service attack detection 【Pass】
	3.8. Logical design Flaw【Pass】
	3.9. USDT Fake Deposit Issue【Pass】
	3.10. Adding tokens 【Low】
	3.11. Freezing accounts bypassed【Pass】

	4. Appendix A：Contract code
	5. Appendix B: vulnerability risk rating criteria
	6. Appendix C：Introduction of test tool
	6.1. Manticore
	6.2. Oyente
	6.3. securify.sh
	6.4. Echidna
	6.5. MAIAN
	6.6. ethersplay
	6.7. ida-evm
	6.8. Remix-ide
	6.9. Knownsec Penetration Tester Special Toolkit


